Cardiomyopathy-linked myosin regulatory light chain mutations disrupt myosin strain-dependent biochemistry.

نویسندگان

  • Michael J Greenberg
  • Katarzyna Kazmierczak
  • Danuta Szczesna-Cordary
  • Jeffrey R Moore
چکیده

Familial hypertrophic cardiomyopathy (FHC) is caused by mutations in sarcomeric proteins including the myosin regulatory light chain (RLC). Two such FHC mutations, R58Q and N47K, located near the cationic binding site of the RLC, have been identified from population studies. To examine the molecular basis for the observed phenotypes, we exchanged endogenous RLC from native porcine cardiac myosin with recombinant human ventricular wild type (WT) or FHC mutant RLC and examined the ability of the reconstituted myosin to propel actin filament sliding using the in vitro motility assay. We find that, whereas the mutant myosins are indistinguishable from the controls (WT or native myosin) under unloaded conditions, both R58Q- and N47K-exchanged myosins show reductions in force and power output compared with WT or native myosin. We also show that the changes in loaded kinetics are a result of mutation-induced loss of myosin strain sensitivity of ADP affinity. We propose that the R58Q and N47K mutations alter the mechanical properties of the myosin neck region, leading to altered load-dependent kinetics that may explain the observed mutant-induced FHC phenotypes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

In vivo analysis of an essential myosin light chain mutation linked to familial hypertrophic cardiomyopathy.

Mutations in cardiac motor protein genes are associated with familial hypertrophic cardiomyopathy. Mutations in both the regulatory (Glu22Lys) and essential light chains (Met149Val) result in an unusual pattern of hypertrophy, leading to obstruction of the midventricular cavity. When a human genomic fragment containing the Met149Val essential myosin light chain was used to generate transgenic m...

متن کامل

Essential light chain S195 phosphorylation is required for cardiac adaptation under physical stress.

AIMS Regulatory proteins of the sarcomere are pivotal for normal heart function and when affected by mutations are frequently causing cardiomyopathy. The exact function of these regulatory proteins and how mutations in these translate into distinct cardiomyopathy phenotypes remains poorly understood. Mutations in the essential myosin light chain (ELC) are linked to human cardiomyopathy characte...

متن کامل

Hypertrophic cardiomyopathy.

Hypertrophic cardiomyopathy is a multigenetic cardiac disease with autosomal dominant pattern of inheritance and incomplete penetrance, with the exclusion of those cases caused by mutations in the mitochondrial genome. The disease is usually caused by mutations in several sarcomeric contractile protein genes. Mutations have been found in four genes that encode components of the thick filament: ...

متن کامل

Mutations of the light meromyosin domain of the beta-myosin heavy chain rod in hypertrophic cardiomyopathy.

Familial hypertrophic cardiomyopathy (HCM) is caused by mutations in 9 sarcomeric protein genes. The most commonly affected is beta-myosin heavy chain (MYH7), where missense mutations cluster in the head and neck regions and directly affect motor function. Comparable mutations have not been described in the light meromyosin (LMM) region of the myosin rod, nor would these be expected to directly...

متن کامل

Structural characterization of the C3 domain of cardiac myosin binding protein C and its hypertrophic cardiomyopathy-related R502W mutant.

Human cardiac myosin binding protein C (cMyBP-C), a thick filament protein found within the sarcomere of cardiac muscle, regulates muscle contraction and is essential for proper muscle function. Hypertrophic cardiomyopathy (HCM), a genetic disease affecting 1 in 500 people, is the major cause of death in young athletes. It is caused by genetic mutations within sarcomeric proteins. Forty-two per...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 107 40  شماره 

صفحات  -

تاریخ انتشار 2010